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Purpose. In population pharmacokinetic studies, the dosing history is
sometimes recorded in more than one way. The purpose of this study
was to develop and evaluate a procedure for discriminating between
rival dosing histories, i.e., for each individual in a data set, identify
the dosing history that is the most plausible.

Methods. The procedure consists of four steps. In the first step we
identify individuals whose dosing histories produce predictions that
are consistent. In the second step these individuals are used to build
a population pharmacokinetic model which is used, in step three, to
select the dosing history for the individuals not identified in step one.
In step four the population model is refined using the best available
dosing histories for all individuals. The proposed procedure was evalu-
ated using both simulations and a real data set, in which two dosing
histories, based on patient diaries and electronic monitoring devices
(MEMS) were available.

Results. In the real data set, estimated variabilities were almost always
lower when the selected dosing histories were used compared to when
no selection procedure was used. The diary dosing histories were
selected more often than the MEMS dosing histories. In the simulations,
the parameter estimates obtained using the selection procedure were
closer to the true parameter values compared to when only one of the
dosing histories was used.

Conclusions. The proposed procedure appears to be robust and should
be beneficial in at least two respects: improved parameter estimation
of population pharmacokinetic and PK/PD models and objective infor-
mation by which dosage recording methodologies can be compared
and patient dose recording behavior can be assessed.

KEY WORDS: compliance; dosing history; NONMEM; population
pharmacokinetic analysis.

INTRODUCTION

Population pharmacokinetic analysis has proven able to
generate useful information from sparse data (1), for example,
with data from outpatient studies, but a poor knowledge of the
dosing history will severely diminish the trustability of the
result (2). Therefore knowledge of the dosing history, or a
fair estimate of it, is required when analyzing this type of
pharmacokinetic/pharmacodynamic (PK/PD) data. In phase I
single dose studies this is routinely obtained since the dose
intake is supervised by the staff at the clinic. However, in
outpatient studies with multiple dosing, e.g., phase II and III
clinical studies, the assessment of the correct dosing history
can be more problematic. Not only are the doses taken without
the detailed control (with respect to the actual intake of the
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dose as well as the time of intake) present in phase I studies,
it is usually also necessary to have correct information from
more than one dosing occasion prior to blood sampling or PD
measurement. The issue of dose intake information is therefore
a crucial part of the study design.

It should be noted that we do not use the term dosing
history in the same sense as the term compliance is often used
in the literature. The latter usually refers to the way patients
adhere to a prescribed dosage regimen while the first refers to
the actual dose intakes leading to the observations to be ana-
lyzed, regardless of whether the doses were taken as prescribed
or not. Obviously there are connections between the two, for
example one of the often seen compliance patterns, “white-
coat compliance”, where the compliance to a prescribed dosage
regimen often increases in the days prior to a visit to the clinic
(3), will directly affect the dosing history of any observations
made during the visit to the clinic. On the other hand, “drug
holidays”, defined as a period of several days without drug
intake (3), will not have the same consequences to the analysis
of pharmacokinetic data unless it occurs just prior to (relative
to the half-life of the drug) the time-point of the pharmacokinetic
observations. Of course, drug holidays will have a large impor-
tance when trying to relate a side-effect event, occuring between
two clinic visits, to the exposure to the drug, or for that matter,
to the success or failure of the treatment as a whole. However,
in the present paper we concentrate on, from a data analysis
point of view, the problems that arise when there are uncertaint-
ies in the dosing history.

The methods to record dosing histories can be broadly
divided into being either subjective or objective (4). Subjective
methods are those that rely on the information provided by the
patient, by, for example, interviews or patient diaries. Objective
methods, on the other hand, rely on sources of information
other than the patient. Staff supervised intake is an example of
a method that is usually considered to give an objective measure
of dose intake, electronic monitoring devices is another. An
example of the latter is MEMS (Medication-Event-Monitoring
System APREX Corporation, Fremont, CA). These are special
drug containers that record when the drug is dispensed. There
are a number of variants these, e.g., eye-drop containers, con-
tainers for drugs that are to be inhaled, and special lids for pill
bottles (3). The idea is that the recorded time of dispensing
should give an estimate of the time of drug intake. Pill counts
have also been used to provide a rough estimate of overall
compliance, but for pharmacokinetic analysis purposes, do not
provide the necessary information about the dosing history.

None of these methods is ideal. Dose intake information
given by the patient can be biased towards what is “expected.”
Electronic monitoring devices can cease to function due either
to hardware failure or mishandling (5). The recording may be
inaccurate if the patient does not take the dose immediately
after he opens the pill bottle or that more or less than the
required amount is dispensed during a single pill bottle opening.
Staff supervised intake may not be feasible in an outpatient
study. Pill counts do not reflect the total number of doses taken
and times of dose intake are not provided.

From a data analysis point of view, one practical conse-
quence of having patients in which the quality of the dosing
history is variable is that the data analyst is likely to face the
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problem of handling outliers with the knowledge of an unknown
contribution from a possibly inaccurate dosing history. If an
individuals dosing history is clearly incorrect then the decision
to exclude the individual is easily made. If the dosing history
does not result in observations that are distinguishable from
the bulk of the data, then the individual will be retained in the
data set. Between these two extremes, when the observations
are slightly out of line, but not more so than they may be normal
observations from an odd individual, the data analyst will have
to make a more or less subjective decision whether to retain
the individual in the data set or not. The influence that an
individual with an incorrect dosing history will have, if retained
in the data set, on the results of the analysis depends on whether
the retained observations have a high influence and/or leverage
on the calculations involved in the analysis of the data. In any
event, it is likely that retaining individuals with incorrect dosing
histories will increase the imprecision and, possibly, introduce
bias in the estimated parameters.

It is obvious that the dosing histories provided by various
methods differ from studies where more than one recording
method has been employed (5,6). Although it is sometimes
believed that one method is preferable to the other, the problem
is then that one method of recording the dosing history might
not provide an adequate dosing history for all individuals in
the data set. We will describe one approach that can be taken,
if two (or more) parallel dosing histories are available for each
patient. First, individuals are identified for which the dosing
histories are consistent, that is, give rise to, for all practical
purposes, the same results. Then we address the subsequent
question of how to treat the individuals that do not have consis-
tent dosing histories. For illustration, we use data from an
outpatient Phase II study, where sparse plasma concentration
data were collected and dosing histories were recorded both
by patient diaries and MEMS lids. This study was originally
designed to be analyzed using population analysis (7) and we
will present the suggested approach in this context. However,
there is nothing inherent in the approach that necessitates this
type of analysis, except perhaps that the data from outpatient
studies are often sparse and population analysis is commonly
used to analyze such data (1).

MATERIALS AND METHODS

Dosing History Selection Algorithm

The proposed selection procedure for discriminating
between two dosing histories is depicted in Figure 1. In step
1 predictions for the data using each of the two dosing histories
are obtained using a basic model that is consistent with the
expected pharmacokinetic characteristics of the drug. The
resulting predictions are compared and the individuals that have
similar predictions are considered to exhibit consistent dosing
histories (CDH). Such a procedure will down weight differences
in the dosing history that occurred so long before the time of
the observations that they will have no influence on the estima-
tion of pharmacokinetic parameters. On the other hand, if the
observation is made relatively close to the dosing event, even
small differences in dosing history may result in different pre-
dictions. The individuals with non-consistent dosing histories
(non-CDH) are retained in.both of two separate data sets, one
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Fig. 1. The proposed procedure for discriminating between two
dosing histories.

for each method of dosing history assessment. In step 2, the
CDH data set is used to build a population model for the data.

In step 3 , using the population model developed in step
two, we perform two empirical Bayes estimations (8) (hereafter
called Bayesian analysis) for each individual belonging to the
non-CDH data set, one for each dosing history. To decide which
of the two dosing histories is the most plausible for that patient,
the likelihood of these individual analyses are compared. The
most plausible dosing histories are retained in the selected
dosing histories (SDH) data set. This SDH data set is then
merged with the CDH data set and the population model is
refined with the data from all individuals (step 4).

During the dosing history selection algorithm, two subjec-
tive choices have to be made. The first is which basic model
to use in step 1 and the second is the cut-off value below which
we say that the dosing histories are consistent, also step 1. In
addition, choices are always part of population model building
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(step 2). In step 3, we used NONMEM (9) for performing the
Bayesian analysis and the objective function value, which is
—2 times the log likelihood, provided by NONMEM, and it is
an appropriate criteria for the selection between the two non-
CDH dosing histories. However, the sum of the squared
weighted residuals (WRES) constitutes a more easily accessible
means of comparison. Although these two measures can be
expected to perform similarly in the present situation, the two
were compared.

Real Data Set

The real data set was collected as a part of a double-
blind, parallel multi-national, multi-center study comparing the
investigational drug to placebo. Doses were taken orally twice
daily for six months. Each patient was scheduled for five visits
to the study clinic. Blood samples for pharmacokinetic analysis
were taken at two of the study visits in selected clinics in five
of the ten participating countries. The study was performed in
accordance with the principles stated in the Declaration of
Helsinki and approved by local Ethics Committees. Two blood
samples, approximately one hour apart, were taken at each
sampling visit. Visits could either be in the “moring” (04
hours post-dose according to the protocol) or in the “afternoon”
(5-8 hours post-dose according to protocol) depending on when
the patient was scheduled for a visit. Compliance was monitored
using MEMS lids (MEMS-1®) during the whole study period.
The patients were not actively informed about the monitoring
by the MEMS. The dosing history was also recorded in patient
diaries (the week immediately before a visit to the clinic) com-
bined with any additional information the patient provided dur-
ing the clinic visit (which was noted in the case record form).
In addition to concentration-time data, a number of covariates
were available for each patient: age, height, weight, gender,
serum creatinine, creatinine clearance (calculated from the other
covariates according to the Cockroft and Gault equation (10)),
smoking and drinking habits. Patients with a pill count of less
than 70% were excluded from the pharmacokinetic analysis.

Pharmacokinetic information for population model build-
ing was available from 222 visits of 120 patients. Dosing histor-
ies from the diaries were available from all these visits,
compared to MEMS, where information was available from
180 visits of 92 patients. The difference occurs from MEMS
not being returned by some patients and by inability to retrieve
the information stored by some MEMS. Only the visits for
which both MEMS and diary data were available were included
in the selection procedure, i.e. 180 visits of 92 patients. Each
patient visit was treated as a separate individual during the
course of the dosing history selections (steps 1 and 3 in Figure
1). During population model building (steps 2 and 4 in Figure 1),
both visits were recognized as coming from the same individual.

When the real data set was used to test the selection
procedure, we had to make the choices about the form of the
basic model and the size of the cut-off limit in step 1. For
constructing the basic model, we used two pieces of prior
knowledge: that absorption was rapid and that the terminal half-
life was 6 hours. The resulting model was a one-compartment
model with first-order absorption (absorption half-life 30
minutes). As expected from this rather crude information, the
basic model was not in agreement with the results obtained
from later stages population modeling. In a separate run, we
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investigated whether a more appropriate choice of basic model
(a two-compartment model with parameter estimates close to
those obtained from the present data) would result in different
selection procedure. As cut-off limit in step 1, for what could be
considered consistent predictions, we chose an average relative
difference of 5% between the predictions as the default value,
but also investigated the outcome of the selection procedure
when up to a 20% difference was considered consistent.

The population model building was performed using the
non-linear mixed effects modeling software NONMEM (9). We
tried different structural, covariate, and statistical (correlations
between the parameters, inter-individual, inter-occasion, and
residual variability components (11)) sub-models as indicated
appropriate from complementary graphical analyses.

Dose Recording Behavior

We also examined the differences between the diary and
MEMS dosing histories for the patients in the non-CDH data
set. Here we looked only at the two last scheduled dosing
occasions before blood samples were taken. The (last) morning
dose prior to sampling was defined as being the dose(s) taken
after midnight the evening before sampling. The (second-to-
last) evening dose prior to sampling was defined as being the
dose(s) taken between noon and midnight on the day before
sampling.

In step 3 the dosing histories of the non-CDH patients
were compared using Bayesian analysis. To assess whether the
decision to use one of the dosing histories instead of the other,
for a specific patient, led to a marked improvement, we com-
pared the objective function values (the objective function value
is calculated by NONMEM and is proportional to —2 log
likelihood) for the two analyses. We defined a marked improve-
ment to be a difference of more than 4. This is loosely based
on the fact that for two hierarchical models, one with one more
parameter, a difference of 4 is significant at p < 0.05.

One possibility is that there might be a systematic differ-
ence between the patients in the CDH data set compared to the
patients in the non-CDH data set. To study this we tested for
any differences in patient characteristics (demographic data and
habits) using unpaired z-test (p < 0.05).

Simulations

Although the analysis of real data can illustrate the selec-
tion procedure and provide information about recording behav-
ior, it cannot demonstrate that the procedure chooses the (more)
correct dosing history. To evaluate this point we used simula-
tions. The way we simulated data is depicted in Figure 2. We
started with two different dosing histories. These could have
been arbitrarily chosen, but we chose to use the two sets of
dosing histories (and the sampling history) that were available
from the real data set. To stress that there is no necessary
connection to the real data set, we have denoted them dosing
history 1 and 2, rather than diary and MEMS. For each individ-
ual we randomly selected one of the two dosing histories for
generation of data. The result was a data set with true (known)
dosing histories. From the true dosing histories data set we
simulated data using a one-compartment mode! with first order
absorption and with three sets of population parameters (again
no necessary connection with the real data set although there
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Fig. 2. Data simulation algorithm.

are some similarities). The first parameter set (Model A) had
a rapid absorption and a terminal half-life of 10 hours. The
second parameter set (Model B) had a rapid absorption and a
terminal half-life of 20 hours, and the third parameter set (Model
C) had a slow absorption and a terminal half-life of 10 hours.
The three sets of parameter values used in the simulation are
given in Table L.

Through the simulations we created a situation similar to
that of our real data set, i.e., we had one set of observations
together with two dosing histories. By applying the selection
procedure to these data sets, we obtained a selected data set.
It was then possible to compare the population as well as the
individual parameter estimates obtained using the selected data
set and the data sets with only dosing history 1 or 2 to the true
parameter values.
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RESULTS
Real Data Set

The plot of observed concentration versus time after dose
for the selected dosing history obtained using the default condi-
tions is displayed in Figure 3. Each line joins the two concentra-
tions obtained on one visit. When the selection procedure was
applied using default conditions, 37% of the total number of
visits were included in the CDH data set. Forty seven percent
of the total number of visits were in step 3 selected to the diary
dosing history. The remaining 16% were in step 3 selected to
the MEMS dosing history. For the higher cut-off value (20%)
in the initial selection these values were 61%, 27%, and 12%.
The same values when using the two-compartment model in
step 1 were 19%, 48%, and 33%. The last model led to a smaller
number of visits being regarded as having CDH compared to
the default conditions, which it is likely to be because the
dosing history that affects the predictions are longer with the
two compartment model.

There were no differences in demographic indices or habits
between the patients with consistent and non-consistent dosing
histories, neither between patients selected to diary and to
MEMS.

The non-CDH data, from the selection based on the basic
one-compartment model with 5% cut-off, consisted of 114 vis-
its. Among the 114 visits, 25 had a marked difference (objective
function value difference >4) between the dosing histories. In
step 3, all of these 25 visits were selected to the same dosing
history, regardless of which basic model, cut-off value, or crite-
ria for selection in step 3 was used. Of the 89 non-CDH visits
that were not markedly different according to the objective
function value, nine were selected differently when the sum of
the weighted squared residuals was used as the selection criteria
in step 3. The largest difference in the objective function value
between MEMS and diary dosing histories for these nine visits
was 0.4.

A two-compartment model with a first-order absorption
and a linear relationship between CL and creatinine CL was
found to best describe the data. The statistical model consisted
of inter-individual variability in V/F, a fully correlated inter-
occasion (11) variability in CL/F and V/F (this is denoted in
Table II as inter-occasion variability in F) and inter-occasion
variability in Ka. The data were log-transformed before analyses
and the residual error was additive in the log domain (i.e.,
approximately proportional for untransformed data). The popu-
lation parameter estimates obtained using the selected dosing
histories from the three conditions tested, together with the
estimates from when only diary and only MEMS dosing histor-
ies were used, are given in Table II. The parameter estimates
obtained using the three different conditions for the subjective
choices are similar and appear not to be dependent on these
settings in the range that we tested. The estimated variabilities
were almost always lower for the selected data sets compared
to when no selection procedure was used to define the dosing
history. In general, the population parameter estimates obtained
when the selected dosing histories and when only the diary
dosing history were used showed greater similarity than those
estimates obtained when only the MEMS dosing history was
used.

For 24 of the 25 visits showing marked difference between
the dosing histories, the diary dosing history was superior. In
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Table I. Parameter Estimates Obtained with the Simulated Data Sets
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True dosing Selected dosing Dosing Dosing
True values history history history 1 history 2
Model A — t1/12 = 10 h, rapid absorption
CL“ (L/h) 14.5 14.9 14.3 15.6 14.2
V(L) 210 180 209 194 282
Ka® (h™") 3.0 2.1 1.7 >10 1.9
8 CRCL° 0.008 0.007 0.009 0.002 0.006
1Iv¢ CL (%) 35 42 41 0 0
IV V (%) 35 31 57 142 142
IV Ka(%) 35 48 0 >1000 108
€ (%) 10 11 13 21 20
Model B — t1/2 = 20 h, rapid absorption
CL (L/h) 7.0 7.1 7.0 7.3 6.9
V(L) 210 170 210 940 268
Ka (h™h) 3.0 1.7 1.1 0.9 0.8
6 CRCL 0.008 0.007 0.011 0.009 0.011
IV CL (%) 35 42 39 48 48
IV V (%) 35 33 77 733 733
IV Ka(%) 35 53 157 710 710
€ (%) 10 10 10 13 13
Model C — t1/2 = 10 h, slow absorption
CL (L/h) 14.5 15.0 15.0 15.2 14.2
V(L) 210 189 210 439 314
Ka (h™Y 0.8 0.8 1.0 >10 0.8
6 CRCL 0.008 0.007 0.004 0.010 0.005
v CL (%) 35 42 38 57 57
IV V (%) 35 23 43 303 303
1V Ka(%) 35 59 130 >1000 117
€ (%) 10 10 11 20 18

¢ For a subject with creatinine clearance of 84 ml/min.
® Absorption rate constant.

¢ Parameter relating creatinine clearance to CL.

4 Inter-individual variability.

¢ Residual variability.

only one case was the MEMS history superior. For 23 of the
25 visits the major difference between the two dosing histories
was that the diary data (and the measured concentration level)
indicated that a morning dose was taken, whereas no corres-
ponding MEMS record existed of dose intake.

Figure 4 shows how the selection was made in step 1 and
step 3. The data is from a representative individual with the
major difference between the two dosing histories being that
the diary dosing history reports a morning dose while the MEMS
dosing history does not. The top panel shows the predicted
concentration-time profiles from the basic one compartment
model for the day before and the day of sampling. The lower
panel shows the predicted concentration-time profiles from the
population model built in step 2. Also indicated in this panel
are the observed concentrations. Clearly, for this individual,
the diary recordings give the most likely dosing history.

Simulated Data Set

The parameter values obtained from the true dosing history,
the selected dosing history, and dosing histories 1 and 2 are
given in Table I. The parameter estimates from the selected
data set were almost always closer to the estimates obtained
when the true dosing history was used than the estimates

obtained when either dosing histories 1 or 2 were used for the
whole data set. Focusing on two important parameter estimates:
CL and inter-individual variability in CL, it can be seen that
the former is robust and exhibits the same value regardless of
dosing history. The inter-individual variability in CL, on the
other hand, is highly dependent on the dosing history. For Model
A, it is driven to zero when either dosing history 1 or 2 alone
is used. For Models B and C these dosing histories show inflated
values of inter-individual variability in CL. The true and
selected dosing histories show minor overestimations of the
parameter regardless of condition. The root mean squared errors
of the individual CL estimates obtained (with Model A) when
using the true, the selected and dosing histories 1 and 2, were
17%, 33%, 33%, and 65% respectively. The corresponding
values for V (volume of distribution) were 42%, 57%, 194%,
and 313%.

DISCUSSION

When more than one dosing history record is available it
opens up the possibility for the data analyst that would not be
accessible with only a single dosing history. As a first step,
individuals with consistent dosing histories can be identified.
One option is to consider only the dosing histories for these
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patients to be of high enough quality for being included in
the analysis. This alternative is attractive for obtaining basic
pharmacokinetic information from a relatively large data set.
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However, if the data set is not large enough to exercise this
option, or if information about subgroups is required, there may
be a need to use as much of the data as possible.

In the present study, we have presented a method to dis-
criminate between rival, or parallel, dosing histories. The proce-
dure can be used to increase the number of evaluable patients
from a clinical trial and to decrease the noise introduced by using
incorrect dosing histories. Only two, predefinable, subjective
choices have to be made and the selection procedure appears
to be robust to both. A possibility to further robustify the
approach, not explored by us but straightforward in theory, is
to allow a partial iteration of the outlined scheme. After having
gone through the entire scheme in Figure 1, one could return
to step 3 and based on the “final” population model, all data
would be selected to either dosing history and a new “final”
model would be constructed based on those data. Such a scheme
can be expected to lessen the influence of the original choices
in step 1 even further. Another situation when such an iteration
procedure may become useful is when the data set is so small
that the cut-off value of step 1 has to be set to a relatively high
value in order to include sufficient data to be able to build the
population model of step 2. It should be noted that the 5%
level for considering two predictions ts be similar would, in
most situations, be considered very strict and is certainly much
smaller than the magnitude of the residual error, which in popu-
lation analyses not seldom exceeds 25% {12).

The simulations show that the selected dosing history pro-
duced parameter estimates that were closer to the parameter
estimates obtained when the true dosing history was used, com-
pared to if either dosing history alone was used for all individu-
als. Especially, using either dosing history on its own resulted

Table II. Parameter Estimates from the Real Data Obtained When Altering the Subjective Choices in the Selection Procedure

Selection
Basic one Basic one Basic two
compartment model compartment compartment Only

cutoff = 5% model cutoff = 20% model cutoff = 5% MEMS Only diary
CL“ (L/h) 14.3 (3) 143 (4) 144 (3) 13.1 14.7 (4)
Vel (L) 57.7 (8) 62.9 (9) 579 (7 92 66 (12)
Q¢ (L/h) 9.7 (12) 8.9 (14) 9.9 (1) 26 10 (23)
Vss? (L) 122.1 (18% 129.9 (224 128.7 (15%) 830 132 (245
Ka® (h™") 1.6 (20 1.8 (24 1.5 (209 23 2.3 (26)
6 CRCL/ 0.008 (20) 0.008 (23) 0.008 (19) 0.010 0.009 (23)
[ve vV (%) 38 (63) 34 (94) 29 (90) 95 31 (177)
IOV" F (%) 32 (23) 39 (29) 35 (20) 60 42 (33)
10V Ka (%) 297 (33) 261 (33) 283 (26) 431 356 (58)
€ (%) 6 (21) 7 (35) 5(26) 23 10 (40)

Note: Figures in parentheses are %CV.

“ For a subject with creatinine clearance of 84 ml/min.
# Central compartment volume of distribution.

¢ Inter-compartment clearance.

4 Volume of distribution at steady-state.

¢ Absorption rate constant.

I Parameter relating creatinine clearance to CL.

# Inter-individual variability.

# Inter-occasion variability.

' Residual variability.

4 1t was not possible to estimate the standard errors in the data set with only MEMS dosing histories.

* The value refers to Vp = Vss — Ve,

! The value refers to 8 = Ka — «, where a is the exponent of the first term in the bi-exponential model.
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Fig. 4. The plot illustrates the selection in step 1 and step 3. The data
is from a representative individual with the main difference between
the two dosing histories being that the diary dosing history reports a
morning dose the day of sampling while the MEMS dosing history
does not. The top panel shows the predicted concentration-time profile
(diary dosing history = solid line, MEMS dosing history = dashed
line) from the basic one-compartment model for the day before and
the day of sampling. Shown is also the predictions that are compared
in this step (D = predictions based on the diary dosing history, M =
predictions based on the MEMS dosing history). The lower panel
shows the predictions based on the two-compartment population model
built in step 2. The “o0’s” are the observed concentrations.

in considerably biased estimates for the variability in drug
exposure (CL). Although the typical value for the pharmacoki-
netic behavior (including the covariate relationship) may be
identifiable in the presence of noise from a partly erroneous
dosing history, the same may not be true for identification of the
concentration-response relationship. Large errors in individual
pharmacokinetic parameter values, as seen in the simulations
when only a single dosing history was available, may mask the
relationships between exposure and response.

An implicit assumption in the suggested approach, is that
the patients selected to CDH have similar pharmacokinetic
characteristics to those in the non-CDH data sets. In other
words, is there a correlation between true pharmacokinetic char-
acteristics and dose history recording? Although this cannot be
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ruled out, it seems unlikely that the difference between the two
groups should be so large that it resulted in erroneous selection.
Further, at least in the real data set explored in this study, the
demographic characteristics were similar for the two groups.

It is easy to envisage that an erroneous dosing history
would increase the magnitude of the residual variability, but,
in addition, it may also inflate inter-individual variability com-
ponents due to the difference between the perceived and true
intake. Since the selection in step 3 favors the dosing history
that results in predictions that are the closest to the predictions
from the typical individual in the population one could argue
that the variability estimates could be shrunk not only to the
true values but beyond. However, this was not observed in the
simulations. Neither does it seem likely that the number of
occasions is large where a considerably erroneous dosing
history would be selected because the individual exhibits
near-typical pharmacokinetic parameter values. However, the
risk of such downward bias would be appreciable if the scheme
was used to select between many, possibly hypothetical, dosing
patterns.

An alternative strategy, if the analyst has enough previous
knowledge to use a population model as starting point, is to
start at step 3, with selection based on objective function value
(or sum of weighted squared residuals) for the entire data set.
A further possibility would be to use a mixture model (9,13),
where both dosing histories were part of the model. Such a
model includes a parameter for the fraction of the population
for which the dosing history is best described by one of the
dosing histories. It would also be possible to obtain individual
estimates of the most plausible dosing history from such a
model.

When two dosing histories are available, the dose recording
behavior can be studied. Hypotheses about this behavior can be
made based on differences between the records. If one method is
assumed to provide the true dosing history, the errors made by
the recording method can be clarified. However, as pointed out
in the introduction, all methods have their drawbacks and none
of them can be expected always to perform well. Using the
proposed scheme yields information about which of two con-
flicting recordings that is the most believable. The limitation
is, of course, that the method can only provide guidance when
differences in recordings have an impact on the concentra-
tion predictions.

When discussing the relative performance of the dosing
histories provided by the diaries and the MEMS, it is worth
noting that the objective with the MEMS monitoring was to
assess the compliance over the entire study period. The patients
were not actively informed about the monitoring in an attempt
to avoid affecting the compliance (the patients were, however,
told about the nature of the MEMS lids if they asked). The
diaries, on the other hand, were handed out to the patients the
week before sampling to ensure a good dosing history for the
analysis of the data. Nevertheless, the MEMS did not perform
as well as could be expected in this study: information was not
available from many of the visits and when the dosing histories
conflicted, diary data proved more reliable. The most common

Teason seems to have been that morning doses taken were

not recorded by MEMS. Although information about MEMS
handling was not collected, one patient had a note in the case
record form that she used to take out the morning tablet in the
evening. This and other “mistakes” in MEMS handling by the
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patients could probably have been avoided if they had been
thoroughly informed about the recording system. The use of
MEMS by uninformed patients seems not to provide a correct
dosing history. The results we obtained during the analysis our
real data set should not be extrapolated to the use of MEMS
by informed patients, where the quality of the recording could
be quite different. What can be concluded is that the MEMS
and the true dosing histories are different in many unin-
formed patients.

When using the proposed method it is easily assumed that
at least one of the two dosing histories provides a good estimate
of the true dosing history. This is obviously not the case, e.g.,
consider two dosing histories that are both, to a large extent,
incorrect. In that situation the selection procedure would tell
us which of the two is the least incorrect, according to the
selection criteria, which do not necessarily mean that the same
selected dosing history will provide correct (or sufficient) infor-
mation about the dose intake of the patient. In other words, the
proposed method is not a substitute for careful recording of
the dose intake and is not intended to reconstruct poorly docu-
mented doing histories.

In summary, we have presented a method for selection
between rival dosing histories that can have a dual benefit:
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improved parameter estimation of population pharmacokinetic
and PK/PD models and objective information by which dosage
recording methodologies can be compared and patient dose
recording behavior assessed.
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